$$3S_r + 2S_m = \sigma$$
, where $\sigma \le \sigma_u$, for 10^6 cycles life (74)

[Equation (9) in the previous analyses], must be limited by the yield strength, σ_y , for large mean stresses as shown in Figure 62, i.e.

$$2S_{\text{max}} = 2S_{\text{r}} + 2S_{\text{m}} \le \sigma_{\text{y}} \tag{75}$$

A conservative shear-fatigue relation is the following:

$$\left(\frac{3\sigma_y}{\sigma_{11}}\right)S_r + 2S_m = \sigma_y$$
, for 106 cycles life (76)

Relation (76) is also shown in Figure 62. [The coefficient $A_n = 3$ in Equations (74) and (76) is taken from data in Reference (35) as indicated earlier on page 164.]

The significance of the limit $S_m = 0$ [used in conjunction with Equation (7) on page 163] is now pointed out. S_m at the bore is related to $(\sigma_\theta)_m$ as follows:

$$S_{m} = \frac{(\sigma_{\theta})_{m}}{2} + \frac{(p_{o} - q_{o})}{4} = \frac{(\sigma_{\theta})_{m}}{2} + \frac{p_{o}}{4} \text{ for } q_{o} = 0$$
.

Thus,

$$(\sigma_{\theta})_{\mathbf{m}} = -\frac{\mathbf{p}_{\mathbf{0}}}{2} \text{ for } \mathbf{S}_{\mathbf{m}} = 0 \quad . \tag{77}$$

For a multiring container it was found that $\left((p_0)_{\text{max}} \approx \sigma_u \text{ for } \alpha_r = \frac{(\sigma_\theta)_r}{\sigma_u} = 0.5, \alpha_m = 0.5 \right)$

 $\frac{(\sigma_{\theta})_{\rm m}}{\sigma_{\rm u}}$ = -0.5 for 10^4 - 10^5 cycles life). Therefore, the maximum tensile strength fatigue criterion with $\alpha_{\rm r}$ = 0.5, $\alpha_{\rm m}$ = -0.5 is equivalent to $S_{\rm m}$ = 0 for the shear strength criterion.

Coefficients A_n and B_n in Equation (73a) are now calculated for the tensile criterion postulated for high-strength steels ($\sigma_u \geq 250,000$ psi) from the fatigue data given in Table XLII and XLIII. These data are as follows in terms of α_r and α_m :

	Semirange Parameter, $\alpha_{\mathbf{r}}$		
Fatigue Life, cycles	for $\alpha_{\mathbf{m}} = 0$	for $\alpha_r = \alpha_m$	
10 ⁴ -10 ⁵	0.50	0.35	
106-107	0.35	0.25	

Thus, for $0 \le \alpha_m \le \alpha_r$ (zero to a positive mean stress) the coefficients A_n and B_n are calculated to be:

Fatigue Life, cycles	A_n	B_n
104-105	2.00	0.86
106-107	2.86	1.14

For, $-\alpha_r \le \alpha_m \le 0$, in leiu of actual data, the fatigue relation (73a) is assumed to be horizontal (Figure 61), i.e., $B_n = 0$ with $A_n = 2.00$ and $A_n = 2.86$ for 10^4 - 10^5 and 10^6 - 10^7 cycles life, respectively.

General Analysis of Multiring Containers

A multiring container or a multiring unit of a two-unit container such as has been shown in Figure 40, is assumed to have pressures fluctuating between \mathbf{q}_0 and \mathbf{p}_0 in the bore and between \mathbf{q}_N and \mathbf{p}_N on the outside diameter. Minimum stresses during the cycle occur at pressure preloadings \mathbf{q}_0 and \mathbf{q}_N , and maximum stresses occur at operating-pressure loadings of \mathbf{p}_0 and \mathbf{p}_N . (The pressures \mathbf{q}_N and \mathbf{p}_N are the so called "fluid-support pressures".) The generalized fatigue criteria (73a, b) are used. The elasticity solutions for the stress components in Equations (73a, b) are as follows:

$$(\sigma_{\theta})_{\mathbf{r}} = \frac{1}{2(k_{n}^{2} - 1)} \left[(p_{n-1} - q_{n-1})(k_{n}^{2} + 1) - 2(p_{n} - q_{n})k_{n}^{2} \right],$$
 (78a, b)

$$(\sigma_{\theta})_{\mathbf{m}} = \frac{1}{2(\mathbf{k}_{n}^{2} - 1)} \left[(\mathbf{p}_{n-1} + \mathbf{q}_{n-1})(\mathbf{k}_{n}^{2} + 1) - 2(\mathbf{p}_{n} + \mathbf{q}_{n})\mathbf{k}_{n}^{2} \right], \tag{79a,b}$$

$$S_{r} = \frac{k_{n}^{2}}{2(k_{n}^{2} - 1)} [(p_{n-1} - p_{n}) - (q_{n-1} - q_{n})] .$$

The p_n are related to the q_n as follows:

$$p_n = q_n + (-\sigma_{rn}) \qquad , \tag{80a}$$

where

$$\sigma_{rn} = \frac{(p_0 - q_0)}{(K^2 - 1)} (1 - k_{n+1}^2 k_{n+2}^2 \dots k_N^2)$$
 (80b)

$$-\frac{(p_N - q_N)}{(K^2 - 1)} (K^2 - k_{n+1}^2 k_{n+2}^2 \dots k_N^2) , n = 1, 2, \dots, N-1$$

There are (2N-1) unknowns: N pressures p_n , $(n=0,1,\ldots,N-1)$ and N-1 pressure q_n , $n=1,2,\ldots,N-1$. (Determining p_0 the bore pressure determines the pressure capability.) There are also (2N-1) equations: N equations from Equations (73a) or (79b) for rings $n=1,2,\ldots,N$ and (N-1) equations from Equation (80a). Therefore a solution is tractable.

This analysis was programmed into a computer code, Program MULTIR (abbreviation for multiring), for Battelle's 3400 and 6400 CDC computers. Results are given later when specific designs are discussed. First, the influence of 'fluid-support pressures' \mathbf{q}_N and \mathbf{p}_N is studied by considering the example of a fatigue shear strength design.